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Kalman Filtering 
 

1. Motivation: 

So far, we have considered how best to record data from 

measurement systems and how to analyze the spectral properties 

of those measurements. One such measurement system from which we 

might record might be represented by Figure 1. 

 

 

 
Figure 1. Schematic of a measurement system, with optional input for control 

applications. Key to note is that the only output is the measurement, z(t), 

with the true state of the system, x(t), hidden from view of the 

experimenter. 

 

Normally, one would take the output, z(t), of the system 

described in Figure 1 and then go along happily analyzing it as 

though it suitably represented their system. But let’s get 

metaphysical for a moment; our measurement, z(t), is ultimately 

some noisy transformation of the inaccessible “true” system 

state, x(t). What do we do if z(t) is very noisy? 

 

In light of the messiness that data can exhibit, one might turn 

to a model-based approach. However, a model is a very clean, 

tidy, and ultimately over-simplified representation of the 

process, and as such removes the influences of latent variables 

that give rise to our process noise. While a simplified 

description of a system is often sufficient and occasionally 

exemplary, in a situation where we care less about succinctness 

and more about accurately representing x(t), the model-based 

approach will fail to capture the fluctuations present in an 

actual system. 
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If models alone do not work, and measurements are too noisy, is 

estimating x(t) simply a lost cause? Not necessarily! We can 

combine model and measurement, prior and posterior, to come up 

with an optimal estimate of x(t). The Kalman filter is precisely 

this estimator. 

 

2. The Bayesian estimator: 

The Kalman filter is a class of Bayesian estimator. You may be 

familiar with Bayes’ theorem: 

 
p(θ|x) =

p(x|θ)p(θ)

p(x)
 (1) 

 

In the framework of hypothesis testing and estimation, p(θ) is 

the prior distribution (the likelihood of each hypothesis being 

tested, independent of any data), p(x|θ) is the likelihood of 

some given observations conditioned upon each hypothesis, p(θ|x) 

is known as the posterior, i.e., the likelihood of each 

hypothesis conditioned upon the data, and p(x) is essentially a 

scaling factor. 

 

While the Kalman filter, in practice, is not a straightforward 

application of Bayes’ theorem, it is derived using Bayes’ 

theorem and, as with all Bayesian estimators, is proven to 

uniformly be the optimal minimum mean squares estimator (MMSE) 

for x(t) in Figure 1, at least in a linear sense (LMMSE). 

Essentially, a MMSE is an estimator that aims to minimize the 

expected square error, E[(x − x̂)2], between the estimate, x̂, and the 
quantity being estimated, x. A LMMSE is a MMSE obtained 

exclusively through linear operations. 

 

3. Formulating the problem 

Enough abstraction, let’s make our system explicit. We will 

model our state value x(n) (notice we are now talking about a 

discrete variable) as arising from the following matrix update 

rule: 

 

 𝐱𝐧 = 𝐀𝐱𝐧−𝟏 + 𝐁𝐮𝐧 + {𝐰n~𝒩(0, 𝐐n)} (2) 

 

where A is the state transition matrix, xn is the state vector at 

step n, B and un are optional control parameters (which will be 

omitted for the rest of this handout), and wn is a random vector 

drawn from a normal distribution parameterized by zero mean and 

covariance matrix Qn. We will then model our measurement of this 

process as follows: 

 

 𝐳𝐧 = 𝐇𝐱𝐧 + {𝐯n~𝒩(0, 𝐑n)} (3) 
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where zn is the measurement at step n, H is the transduction 

matrix, and vn is a random vector drawn from a normal 

distribution parameterized by zero mean and covariance matrix Rn. 

 

4. Assessing assumptions and essential properties 

Before we continue, we must observe our system and identify what 

assumptions and constraints we are imposing on our variables. In 

particular, equations 2 and 3 describe the Gauss-(Hidden) Markov 

model for the time evolution of an observed random variable and 

an underlying unobserved random variable. With this model for 

state evolution, we assume that wn and vn are GWN processes such 

that 

 

 ∀m: ∀n ≠ m: {E[𝐰𝐦𝐰𝐧
T] = 0 ∩  E[𝐯𝐦𝐯𝐧

T] = 0 } (4) 

 

In other words, for each time point n, the value drawn for wn and 

vn is independent of any other values drawn for these processes 

at any other time. Furthermore, we assume that wn and vn are both 

independent of the initial state vector, x0. Given these 

assumptions, we know the process is Markov (i.e., dependent only 

on the directly preceding time lag) There is a rigorous proof 

for this property, but it’s laborious and a bit of a 

distraction, so you’ll have to trust me. This is an important 

property, as it then allows us to iteratively apply the model to 

generate estimates for all n. 

 

 

5. Deriving the estimate 

With the tedium of verifying nice statistical properties out of 

the way, let us now define the estimates that we will be taking. 

We will be making estimates iteratively for each time n, but to 

start, let us consider some specific n after we have already 

obtained its prior estimate, which we shall designate as 𝐱̂𝐧
−. From 

here, we define the following error vectors for our existing 

prior estimate and our soon-to-exist posterior estimate: 

 𝐞𝐧
− ≔ 𝐱𝐧 − 𝐱̂𝐧

− (5) 

 𝐞𝐧
+ ≔ 𝐱𝐧 − 𝐱̂𝐧

+ (6) 

 

In other words, we define how far off our estimates are w.r.t. 

the unseen variable xn. Do not worry that we cannot evaluate 

this; we will be able to evaluate after some transformations and 

definitions to follow. To continue, we may now consider the 

error covariance matrices to be defined as such: 

 𝐏𝐧
− = E(𝐞𝐧

−𝐞𝐧
−T) (7) 

 𝐏𝐧
+ = E(𝐞𝐧

+𝐞𝐧
+T

) (8) 
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We now seek to identify a way to incorporate our most recent 

measurement, zn, into our prior estimate in order to obtain a 

posterior estimate. This is where the linear “L” in our LMMSE 

comes into play; we will simply take a term called the 

“innovation”, which corresponds to the difference between our 

measurement and post-transduction prior estimate, then apply a 

gain to it and add it to our prior to obtain our posterior. In 

math terms: 

 𝐱̂𝐧
+ = 𝐱̂𝐧

− + 𝐊(𝐳𝐧 − 𝐇𝐱̂𝐧
−) (9) 

 

This equation may seem to be a bit ad hoc, but it actually 

arises from applying our measurement formula in Equation 3 to a 

Bayesian formulation (as in Equation 1) where θ corresponds to x 
and x (confusingly) corresponds to the set of all measurements 

from step 1 to n. The derivation is, as with the Markov 

property, quite tedious, so I will not be showing it today. 

 

From here, we need to find the optimal gain 𝐊. We can start by 
making substitutions. By subbing (6) in for (8), we obtain 

 

 𝐏𝐧
+ = E((𝐱𝐧 − 𝐱̂𝐧

+)(𝐱𝐧 − 𝐱̂𝐧
+)T) (10) 

 

We can also substitute (3) into (9) to obtain 

 

 𝐱̂𝐧
+ = 𝐱̂𝐧

− + 𝐊(𝐇𝐱𝐧 + 𝐯n − 𝐇𝐱̂𝐧
−) (11) 

 

which in turn can be substituted into (10) to obtain 

 

 𝐏𝐧
+ = E({𝐱𝐧 − [𝐱̂𝐧

− + 𝐊(𝐇𝐱𝐧 + 𝐯n − 𝐇𝐱̂𝐧
−)]}{𝐱𝐧 − [𝐱̂𝐧

− + 𝐊(𝐇𝐱𝐧 + 𝐯n − 𝐇𝐱̂𝐧
−)]}T) (12) 

 

From here, I will go on assuming that all matrices and vectors 

are now scalars to avoid any tricky linear algebra while still 

giving a flavor of the derivation, but I will show the matrix 

representation of the Kalman gain at the end to show 

similarities between the univariate and multivariate cases. To 

continue with the scalar formalization, we now abuse the 

linearity of the expectation operation to collect and distribute 

expectation terms: 

 

𝐏𝐧
+ = E[(𝐱𝐧 − 𝐱̂𝐧

−)2] − 2𝐊E{[𝐇(𝐱𝐧 − 𝐱̂𝐧
−) + 𝐯n](𝐱𝐧 − 𝐱̂𝐧

−)} + 𝐊𝟐E{[𝐇(𝐱𝐧 − 𝐱̂𝐧
−) + 𝐯n]𝟐} (13) 

  

𝐏𝐧
+ = 𝐏𝐧

− − 2𝐊𝐇𝐏𝐧
− − 2𝐊E{𝐯n(𝐱𝐧 − 𝐱̂𝐧

−)} + 𝐊𝟐𝐇𝟐𝐏𝐧
− + 𝟐𝐊𝟐𝐇E{(𝐱𝐧 − 𝐱̂𝐧

−)𝐯n} + 𝐊𝟐𝐑𝐧 (14) 
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From here, we abuse independence of 𝐯n and 𝐞𝐧
− to obtain 

 

𝐏𝐧
+ = 𝐏𝐧

− − 2𝐊𝐇𝐏𝐧
− + 𝐊𝟐𝐇𝟐𝐏𝐧

− + 𝐊𝟐𝐑𝐧 (15) 

 

It should be noted that 𝐏𝐧
+, the variance of the state centered 

about our estimate, is equivalent to the MMSE term that we wish 

to optimize. Therefore, to find the optimal gain, we 

differentiate with respect to 𝐊, set the derivative to zero to 

find the extremum, and solve for 𝐊. This gives 
 

d𝐏𝐧
+

d𝐊
= −2𝐇𝐏𝐧

− + 2𝐊𝐇𝟐𝐏𝐧
− + 2𝐊𝐑𝐧 

(16) 𝐇𝐏𝐧
− = 𝐊𝐇𝟐𝐏𝐧

− + 𝐊𝐑𝐧 

𝐇𝐏𝐧
−

𝐇𝟐𝐏𝐧
− + 𝐑𝐧

= 𝐊 

 

From here, we now go back to (15) and solve for 𝐏𝐧
+: 

 

𝐏𝐧
+ = 𝐏𝐧

− − 2𝐊𝐇𝐏𝐧
− + 𝐊𝟐(𝐇𝟐𝐏𝐧

− + 𝐑𝐧) 

(17) 𝐏𝐧
+ = 𝐏𝐧

− − 2𝐊𝐇𝐏𝐧
− + 𝐊𝟐

𝐇𝐏𝐧
−

𝑲
 

𝐏𝐧
+ = 𝐏𝐧

−(1 − 𝐊𝐇) 
 

 

Compare these results to the following matrix formulations of 

the equations and note the similarities: 

 

𝐏𝐧
−𝐇T(𝐇𝐏𝐧

−𝐇T + 𝐑𝐧)−𝟏 = 𝐊 (18) 

𝐏𝐧
+ = (𝐈 − 𝐊𝐇)𝐏𝐧

− (19) 

 

Also note that the gain 𝐊 can and will change with each step; 
the subscript was merely omitted for some semblance of 

notational simplicity. 

 

At this point, we have finished the estimation phase and are now 

looking to establish a prior for the next step. This is achieved 

by passing our estimate, 𝐱̂𝐧
+ (from equation 9), the closest thing 

we have to the “true” state vector 𝐱𝐧, into our system equation 

(2): 

 

 𝐱̂𝐧+𝟏
− = 𝐀{𝐱̂𝐧+𝟏

− ~𝒩(𝐱̂𝐧
+, 𝐏𝐧

+)} + {𝐰n~𝒩(0, 𝐐n+1)} (20) 

 𝐱̂𝐧+𝟏
− ≔ E[𝐱̂𝐧+𝟏

− ] = 𝐀𝐱̂𝐧
+ (21) 

 𝐏𝐧+𝟏
− ≔ E[𝐱̂𝐧+𝟏

− 𝐱̂𝐧+𝟏
− T] = 𝐀𝐏𝐧

+𝐀T + 𝐐n+1 (22) 

 

From here, we rinse and repeat. 
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6. Implementing the estimator 

 

Now that we have our equations for the Kalman filter, we can go 

ahead and implement it! Before we start turning the Bayesian 

crank, however, we need to establish our set of priors. Table 1 

gives the information one first needs in order to implement the 

Kalman filter. 

 
Table 1. Required variables for implementing Kalman filter 

Variable Explanation 

𝐀 State transition matrix for model 

𝐇 Transduction matrix for measurement 

{𝐐n} Process noise covariance matrices 

{𝐑n} Measurement noise covariance matrices 

{𝐳𝐧} Sequence of measurements over time 

𝐱̂𝟎
− Initial prior estimate of state vector  

𝐏𝟎
− Initial prior estimate of state covariance 

 

The first two items, A and H, describe the model and therefore 

are crucial to know beforehand. An implicit assumption of the 

Kalman filter is that the model is a decent one; poor models 

will actually perform worse than raw data in terms of tracking 

the “true” state xn. 

 

The sequences of covariance matrices, {Qn} and {Rn}, can also be 

difficult to estimate, especially if they are nonstationary and 

therefore need to be uniquely defined for each step n. {Qn} is 

often particularly difficult to estimate, whereas {Rn} can often 

be evaluated assuming common noise sources (e.g., thermal noise 

in electrodes) or by simply taking a dummy recording of the 

environment. Oftentimes, these parameters must be explicitly 

tuned on some test data before they can be released into the 

wild. 

 

The sequence of measurements over time, {zn}, need not be 

available all at once, and in fact it goes against the iterative 

spirit of the Kalman filter to do so. The Kalman filter is often 

used for efficient real-time tracking; efficient in the sense 

that it only requires the most recent data point be stored in 

memory. 

 

The initial prior estimates are things that ultimately need to 

be set somewhat arbitrarily by the user.   

  

Below, in Figure 2, is a figure depicting the iterative 

algorithm and where to apply the necessary equations. 
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Estimation Step: 

𝐊 = 𝐏𝐧
−𝐇T(𝐇𝐏𝐧

−𝐇T + 𝐑𝐧)−𝟏 

𝐱̂𝐧
+ = 𝐱̂𝐧

− + 𝐊(𝐳𝐧 − 𝐇𝐱̂𝐧
−) 

𝐏𝐧
+ = (𝐈 − 𝐊𝐇)𝐏𝐧

− 
 

Prediction Step: 

𝐱̂𝐧+𝟏
− = 𝐀𝐱̂𝐧

+ (+𝑩𝒖𝒏+𝟏) 
𝐏𝐧+𝟏

− = 𝐀𝐏𝐧
+𝐀T + 𝐐n+1 

LOOP BACK! 

 

7. Demonstration 

• Go over the script Kalman_Vm 

• Change the sw and sv parameters to show off how it behaves 

at the limits 

 

8. Advanced Topics 

 

Parameter estimation 

• Augmented state vector 

• Solve for parameter as yet another state vector element 

• Likely takes form of optimal control parameter u(t) 

 

Nonlinear estimation 

• Linearize equation by taking Taylor expansion, truncating 

at first term 

• This is known as the Extended Kalman Filter 

• No longer guaranteed to be MMSE, merely an ad hoc 

workaround 
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Appendix A. Sketch of proof of Markov property 

 

To prove this, we determine the probability densities p(xn) and 

p(xn-1), then also evaluate p(xn|xn-1), then use the Chapman-

Kolmogorov equation to determine if p(xn) is equal to 

∫ p(𝐱𝐧|𝐱𝐧−𝟏)p(𝐱𝐧−𝟏)d𝐱𝐧−𝟏 See Nahum Shimkin’s 2009 lecture notes pp.2-3 

for more info. 

 

 

Appendix B. Sketch of justification for Equation 9 

 

Again, integrals need to be evaluated, it’s laborious. There is 

one important transformation, however, whereby we set our prior 

estimate, p(xn), to be xn conditioned on all measurements up to 

(but not including) zn, and also set p(zn) and p(zn|xn) as 

conditioned upon all previous measurements. This then allows one 

to use the distribution of the prior estimate and the 

measurement model to evaluate the relevant distributions for any 

given time step, which can then be iterated due to the Markov 

property. See Brown and Hwang 1997 pp.228-231 for more info. 

 

http://webee.technion.ac.il/people/shimkin/Estimation09/ch4_KFderiv.pdf

