
Neuromatch Academy: Deep Learning 
Executive Summary

James Goodman
NBL
05.10.2021



Quick aside

 I put way too much stuff in these slides

 I wanted to these slides to not just be a presentation aid, but also a reference material

 I also didn't totally understand 100% of the course

 All this means we'll be flying through some slides with minimal explanation

2



Background: What was it?



What was the Neuromatch Academy?

 Two summer schools offered under the Neuromatch banner
- Computational Neuroscience
- Deep Learning

 Each a 3-week long intensive course
- Participants separated into "pods" (8+ people per pod)
- Led through a series of Colab / Jupyter notebooks by a TA
- Notebooks included a mix of

• coding exercises
• video lectures

- Split into further groups of 3+ for independent projects

4



What was the Neuromatch Academy?

 Deep learning notable lecturers
- Konrad Kording - Surya Ganguli
- Alexander Ecker - Tim Lillicrap

 Participants were mostly 
- students just out of undergrad
- in the first few years of their Ph.D.s
- in the first few years of their professional careers
- Swathi and I were not the only postdocs, though!

5



Map of concepts covered by the course

6



Google Colab: the environment we worked in

7

Presenter
Presentation Notes
Mention notable lack of tutorial on how to set up a machine learning environment: no advice on building a machine, which cloud sources to use for ML applications at scale, and how to instsall Python, Pytorch, and all those fussy dependencies (and on which OS!)

We just worked in Google Colab which kinda takes care of all that for you (at least as a sandboxing environment – again, to do anything at scale, you need to have a dedicated machine or buy time from a cloud provider)

BUT, we have experience setting that up already, which Swathi, Timo, and Ben can speak to.

Mention the Kaggle alternative that was offered

and in general how all of these are basically just instantiations of Jupyter notebooks



Google Colab: the environment we worked in

8

Presenter
Presentation Notes
Mention notable lack of tutorial on how to set up a machine learning environment: no advice on building a machine, which cloud sources to use for ML applications at scale, and how to instsall Python, Pytorch, and all those fussy dependencies (and on which OS!)

We just worked in Google Colab which kinda takes care of all that for you (at least as a sandboxing environment – again, to do anything at scale, you need to have a dedicated machine or buy time from a cloud provider)

BUT, we have experience setting that up already, which Swathi, Timo, and Ben can speak to.

Mention the Kaggle alternative that was offered

and in general how all of these are basically just instantiations of Jupyter notebooks



Alternatives

 Kaggle
 Deepnote (especially collaboration-focused)
 Amazon Web Services / Google Cloud (for bigger jobs)
 Institutional compute resources (e.g., GWDG)
 Jupyter Notebook + Custom machine

 Only Colab offered free GPU access (albeit with tight restrictions)

9



PyTorch: a framework for deep learning in Python

10

Presenter
Presentation Notes
Contrast with Tensorflow/Keras, the other major player
And of course there's even older frameworks that pros have been using over the past decade… but that's not really important for our purposes

Mention two things Pytorch does really well to make things run fast: GPU compatibility and AutoGrad

Also mention the vast documentation network for it and industry support: it's real




PyTorch: a framework for deep learning in Python

11

"Old" standard:

Presenter
Presentation Notes
Contrast with Tensorflow/Keras, the other major player
And of course there's even older frameworks that pros have been using over the past decade… but that's not really important for our purposes

Mention two things Pytorch does really well to make things run fast: GPU compatibility and AutoGrad

Also mention the vast documentation network for it and industry support: it's real




PyTorch Features

 Importable standard models (both pretrained & randomly initialized) (e.g., Alexnet, Resnet)

 Importable standard datasets (e.g., MNIST, ImageNet)

 Community-vetted classes for standard network layers

 Community-vetted classes for standard optimizers

 Community-vetted classes and methods for data loading & minibatching

 Autograd & GPU support

 Documentation!
- https://pytorch.org/docs/stable/index.html
- Doesn't quite compare to MATLAB's, but very good given how fast this field is moving

12

https://pytorch.org/docs/stable/index.html


Week 1: "The Basics"



Computational graphs, gradient descent, and backpropagation

14

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = tanh ln 1 + 𝑧𝑧
2𝑥𝑥

sin(𝑦𝑦)

Presenter
Presentation Notes
Note that Pytorch is designed for backprop on rate based networks

You're going to be working uphill if you want to implement different learning rules (e.g., Hebbian) or something like a spiking NN (c.f. e.g. Norse: https://reposhub.com/python/deep-learning/norse-norse.html).



Gradient descent, computational graphs, and backpropagation

15

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = tanh ln 1 + 𝑧𝑧
2𝑥𝑥

sin(𝑦𝑦)

Presenter
Presentation Notes
Note that Pytorch is designed for backprop on rate based networks

You're going to be working uphill if you want to implement different learning rules (e.g., Hebbian) or something like a spiking NN (c.f. e.g. Norse: https://reposhub.com/python/deep-learning/norse-norse.html).



Computational graphs, gradient descent, and backpropagation

16

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = tanh ln 1 + 𝑧𝑧
2𝑥𝑥

sin(𝑦𝑦)

Presenter
Presentation Notes
Note that Pytorch is designed for backprop on rate based networks

You're going to be working uphill if you want to implement different learning rules (e.g., Hebbian) or something like a spiking NN (c.f. e.g. Norse: https://reposhub.com/python/deep-learning/norse-norse.html).



Note on Gradient Descent Optimizers

 Generally can't load entire dataset into memory

 Losses and gradients are therefore usually estimated from minibatches

 Optimizers come in two general flavors:
- Stochastic Gradient Descent (SGD)

• "Stochastic" because minibatch gradients are noisy estimates of your "true" gradient
• One hyperparameter: learning rate

- SGD with bells and whistles
• Momentum: average over minibatches to get a better gradient estimate (simply called: 

Momentum)
• Adaptive learning rate (e.g. RMSprop)
• These are not mutually exclusive! (e.g. Adam)
• These all add hyperparameters!

17



All sorts of knobs to tweak

18

 Hyperparameter: a value or model decision determined by the researcher or engineer which 
affects learning, but is not subject to learning

 Typical hyperparameters (which can interact!)
- Choice of loss function (e.g., MSE, Cross-Entropy)
- Choice of loss regularization terms and coefficients
- Choice of model architecture
- Choice of activation function(s) (e.g., ReLU, tanh, linear)
- Choice of learning rate
- Choice of momentum coefficient
- Choice of (mini)batch size
- ...and many more!

 Hyperparameter tuning is a bigger part of the process than one might hope...

Presenter
Presentation Notes
What is a hyperparameter? It's any decision about your model that you make which is not subject to gradient descent.

Examples include:
Node counts
Layer counts
Choice of nonlinearity (ReLU normally chosen for speed)
Choice of architecture (dropout, residual connections, normalization, in addition to typical architectural decisions)
Choice of optimizer (ADAM chosen for speed, SGD for certainty) (generally don't go for Hessian-dependent methods though)
Explicit regularization terms
Usw…



Cross-validation

 Typical form of cross-validation: holdout

 Split data into three separate sets
- Training: defines your parameter gradients

- Validation: tweak hyperparameters until this looks good

- Test: stop tweaking, just evaluate performance

 Pytorch offers built-in methods for doing this bookkeeping

19



Typical methods for regularization and combating vanishing 
gradients

 Regularization: constrains models to help them generalize
- Early stopping (i.e., when validation loss stagnates, halt training)
- Dropout layers (during each training epoch, randomly fix X% of units to 0 activation)
- Explicit regularization terms in a loss function (e.g., L2 penalty in ridge regression)

 Combating vanishing gradients: a notorious problem of machine learning
- Residual blocks (see more in section on ConvNets)
- Normalization (see more in section on ConvNets)

• Batch normalization
• Layer normalization

20



Our first network: the multilayer perceptron!

21



All nonlinear neural nets are universal approximators, but 
deeper nets have higher "expressivity"

22

Presenter
Presentation Notes
That is to say, they can approximate certain functions with exponentially fewer nodes / computations



POV: you finally got a deep learning model to run

23

Presenter
Presentation Notes
"tqdm" package helps to visualize loss over minibatches and show training progress



POV: you finally got a deep learning model to run

24

Validation loss:

• Not NaN

• Decreasing across epochs

• This is the dream

Note: A training "epoch" is a set of minibatches which uses each sample of the training set once

Presenter
Presentation Notes
"tqdm" package helps to visualize loss over minibatches and show training progress



Week 2: Doing more with fewer 
parameters



MLPs are too dense, let's recycle some parameters

26



The convolutional network (ConvNet) saves parameters by 
recycling them across space

27

9 weights total

MLP would require 3969 weights

Presenter
Presentation Notes
Convolution is just fancy matrix multiplication
Note that backprop for convnets can be computed as a convolution operation
In general, convolution can be "inverted" via convolution!



Typical ConvNet pipeline

28



A more typical visualization of the typical ConvNet pipeline

29

(slides from: Alona Fyshe)



Training ConvNets for computer vision requires a "data 
augmentation" step

30



Adding normalization (batch or otherwise) combats the 
problem of too-small or too-large gradients

31

Wu, Y. and He, K., 2018. Group normalization. arXiv preprint arXiv: 1803.08494.



A brief history of ImageNet and the Convnets that solved it

32

Presenter
Presentation Notes
Presented by Alex Ecker, actually!



CNNs take over from 2012

33

Presenter
Presentation Notes
Presented by Alex Ecker, actually!



Old ideas meet new technology (and clever "hacks" to enable 
training on 2 GPUs at once)

34

Presenter
Presentation Notes
Presented by Alex Ecker, actually!



VGG: inefficient, but popular and a triumph of model sharing

35

Presenter
Presentation Notes
Presented by Alex Ecker, actually!



Resnet: residual blocks (skip connections) enable a gradient 
superhighway, combating the vanishing gradient problem

36



Depthwise separable convolution: compose filters as outer 
products to save more parameters (GoogLeNet and ResNeXt)

37

Related concepts: "Inception", 1x1 convolution



Bonus material: U-nets for image segmentation, look a lot like 
autoencoders (or rather, encoder-decoder chains)

38

Sigmoid Activation
for last layer

Robbegerger et al. 2015 arXiv

Presenter
Presentation Notes
Not really covered in the course, but of considerable interest!



Recurrent neural networks (RNNs) save parameters by 
sharing them across time

39



Various sequence learning frameworks ideal for RNN 
application

40

blog.floydhub.com

https://blog.floydhub.com/


Why not just do convolution? (ARMA theory)

 Convolution = moving average filter
- recent information only
- limited memory unless we use many parameters

 RNN = autoregressive filter
- includes a memory even of sequence elements far in the past
- arbitrarily long-lasting memory (in principle) using very few parameters

41

Presenter
Presentation Notes
Ideal for (temporal, 1-D) sequence learning

Instantiates an IIR, instead of FIR, filter along 1 dimension (time or sequence position)

Ergo, it's got much more expressive power per parameter than a ConvNet, which operates using FIR filters, BUT it's slow to train since you have to "unfold" the network

(see: https://www.researchgate.net/publication/236154667_Multidimensional_IIR_filters_and_robust_rational_interpolation)




In many sequence learning applications ("language models") 
one must first learn an "embedding"

42



Problems with RNNs

 In practice, memories that are stored over long time periods influence the state only very 
weakly ("forgetful")

 Also, gradients very easily explode or vanish to zero since one must "unfold" RNNs 
("Backpropagation through time") to perform backpropagation

 This "unfolding" also means that gradient descent requires a lot of operations to compute

43



A trick to deal with forgetfulness: bidirectional RNNs 

44



A trick to deal with forgetfulness: LSTMs and gating

45

related, simpler network: GRU



Attention: weighting states by contextual similarity (relevance)

46

Presenter
Presentation Notes
Note the reorganization into an encoder-decoder framework, too

This allows us to embed each state of the source sequence in a shared latent space to that of the target latent space
Then compute contextual similarity within that



Transformers: Ditch the RNN, "attention is all you need"!

47
Vaswani et al. 2017 arXiv



Transformers are quite difficult to explain

48

do the terms

"keys"

"queries"

"values"

mean anything to you?

If so, you might get it!

Vaswani et al. 2017 arXiv



"Self-attention" in more detail

49

Presenter
Presentation Notes
"multi head" means "stacked in parallel"
think of the "channels" of a CNN

K = key
Q = query
V = value



Pros and cons: RNNs vs. Pure Attention

50



Transformers: more than just "language models"

51



Autoencoders: the classic generative framework

52



Classical autoencoders don't tile latent state space evenly

53



Variational autoencoders smooth the underlying state space

54

Presenter
Presentation Notes
map each sample onto a probability distribution with the encoder (try to make it as close to N(0,1) as possible)
then draw a sample from each latent distribution
then have the decoder (hopefully) spit out something that looks similar
voila!




VAEs yield better random samples

55



Note: Convolutional VAEs are generally bad at invariant 
representations, unlike regular CNNs for image classification

56



Generative Adversarial Networks (GANs): a forger-critic model 
of learning

57

Presenter
Presentation Notes
Basically, the VAE loss function is too "smooth"

What if we used another ANN, an "Oracle", as our loss function instead?



Generative Adversarial Networks (GANs): a forger-critic model 
of learning

58

Presenter
Presentation Notes
Basically, the VAE loss function is too "smooth"

What if we used another ANN, an "Oracle", as our loss function instead?



Loss functions for those who care (cross-entropy)

59

−

Cat-and-mouse

Finicky to train!

Presenter
Presentation Notes
Basically, the VAE loss function is too "smooth"

What if we used another ANN, an "Oracle", as our loss function instead?



GANs generate crisp output, but suffer from mode collapse 

60

Neuromatch was a very anti-GAN summer school…

Presenter
Presentation Notes
Neuromatch was a very anti-GAN conference…



Week 3: Advanced Topics



Unsupervised and self-supervised learning

 Unsupervised
- "Deep belief networks"
- Proper unsupervised methods aren't there yet

 "Self-supervised"
- Take an image dataset
- Data augmentation to hell and back
- Perform image classification, assign augmented images to label of source image
- Basically, a way to try to learn invariant representations without human labels

62

Presenter
Presentation Notes
"Self-supervised" means making a classification problem out of unlabeled exemplars by generating a bunch of images to pair 



Reinforcement learning

 A fairly complicated topic, because it's not just machine learning

 In a nutshell
- "state", "action", "reward", "policy" – important vocabulary for any RL model
- If you are familiar with Q-learning and Dynamic Programming, then you have the framework you 

need to understand this
- If you have this background: Deep Q learning uses an ANN to map states to Q (prospective reward) 

values instead of trying to populate a full Q table through exploration alone
- Optimal policy can then be inferred as the one that maximizes Q from a given state
- Policy gradient methods learn the policy directly, and thus may be more intuitive for non-CS folks 

(and seem to do better, too)

 Probably of interest to learn
- Not data limited!
- Training agents to move a body effectively in an environment: that's RL!

63



Continual learning 

 Catastrophic forgetting
- Train on one task
- Then train on another
- Uh oh! The network forgot how to do the first task

 Strategies to counteract:
- Rehearsal / Replay, e.g., Gradient episodic memory (GEM)
- Regularization, e.g., Elastic weight consolidation (EWC)
- Supermasks in superposition

 CORe50 dataset to stress-test continual learning paradigms

64

Presenter
Presentation Notes
Transfer learning
Catastrophic forgetting



"Out-of-distribution" learning

 Transfer learning
- Train a net on one task/dataset (e.g., Imagenet)
- Then use this to initialize your net for a new task/dataset
- Normally, random initialization, e.g. Xavier initialization, is used

 Meta-learning
- "Learning to learn"
- One goal: given only 5-10 exemplars, learn to identify a new image class
- Not much covered in the way of methods...

 Continual learning fits under this umbrella, too

65



Ethics topics covered along the way

 Don't buy into "hype" (or "anti-hype" for that matter)

 Being aware of biases (gender, race, age, ...)
- And how DL can reinforce harmful biases

 Deepfakes

 Environmental impacts

 RL for, say, self-driving cars
- Trolley problem?
- https://www.moralmachine.net/

66

Presenter
Presentation Notes
Environment
Reinforcement of societal biases




Projects: loads of resources/datasets provided

67

 https://deeplearning.neuromatch.io/projects/docs/datasets_and_models.html

 https://deeplearning.neuromatch.io/projects/Neuroscience/ideas_and_datasets.html

 https://deeplearning.neuromatch.io/projects/Neuroscience/algonauts_videos.html

 In many cases, "domain adaptation" of an existing model was often the most effective 
solution...

Presenter
Presentation Notes
We made a baby network in my group (two, actually, albeit very shallow ones, our project was an architecture comparison project)

Which ultimately did not work

A lot of it involved getting used to the Pytorch framework

And dealing with the fact that three heads trying to code at once was a little cumbersome

BUT! many datasets and resources were provided!

https://deeplearning.neuromatch.io/projects/docs/datasets_and_models.html
https://deeplearning.neuromatch.io/projects/Neuroscience/ideas_and_datasets.html
https://deeplearning.neuromatch.io/projects/Neuroscience/algonauts_videos.html


Final remarks

 A lot of material, could not retain it all

 Net valuable experience

 Decent starting point for developing a DL aspect of a project

68

Presenter
Presentation Notes
I personally blame the "Google people" for how overwhelming it got... they all had CS backgrounds and seemed to assume we did, too!


	Neuromatch Academy: Deep Learning �Executive Summary
	Quick aside
	Background: What was it?
	What was the Neuromatch Academy?
	What was the Neuromatch Academy?
	Map of concepts covered by the course
	Google Colab: the environment we worked in
	Google Colab: the environment we worked in
	Alternatives
	PyTorch: a framework for deep learning in Python
	PyTorch: a framework for deep learning in Python
	PyTorch Features
	Week 1: "The Basics"
	Computational graphs, gradient descent, and backpropagation
	Gradient descent, computational graphs, and backpropagation
	Computational graphs, gradient descent, and backpropagation
	Note on Gradient Descent Optimizers
	All sorts of knobs to tweak
	Cross-validation
	Typical methods for regularization and combating vanishing gradients
	Our first network: the multilayer perceptron!
	All nonlinear neural nets are universal approximators, but deeper nets have higher "expressivity"
	POV: you finally got a deep learning model to run
	POV: you finally got a deep learning model to run
	Week 2: Doing more with fewer parameters
	MLPs are too dense, let's recycle some parameters
	The convolutional network (ConvNet) saves parameters by recycling them across space
	Typical ConvNet pipeline
	A more typical visualization of the typical ConvNet pipeline
	Training ConvNets for computer vision requires a "data augmentation" step
	Adding normalization (batch or otherwise) combats the problem of too-small or too-large gradients
	A brief history of ImageNet and the Convnets that solved it
	CNNs take over from 2012
	Old ideas meet new technology (and clever "hacks" to enable training on 2 GPUs at once)
	VGG: inefficient, but popular and a triumph of model sharing
	Resnet: residual blocks (skip connections) enable a gradient superhighway, combating the vanishing gradient problem
	Depthwise separable convolution: compose filters as outer products to save more parameters (GoogLeNet and ResNeXt)
	Bonus material: U-nets for image segmentation, look a lot like autoencoders (or rather, encoder-decoder chains)
	Recurrent neural networks (RNNs) save parameters by sharing them across time
	Various sequence learning frameworks ideal for RNN application
	Why not just do convolution? (ARMA theory)
	In many sequence learning applications ("language models") one must first learn an "embedding"
	Problems with RNNs
	A trick to deal with forgetfulness: bidirectional RNNs 
	A trick to deal with forgetfulness: LSTMs and gating
	Attention: weighting states by contextual similarity (relevance)
	Transformers: Ditch the RNN, "attention is all you need"!
	Transformers are quite difficult to explain
	"Self-attention" in more detail
	Pros and cons: RNNs vs. Pure Attention
	Transformers: more than just "language models"
	Autoencoders: the classic generative framework
	Classical autoencoders don't tile latent state space evenly
	Variational autoencoders smooth the underlying state space
	VAEs yield better random samples
	Note: Convolutional VAEs are generally bad at invariant representations, unlike regular CNNs for image classification
	Generative Adversarial Networks (GANs): a forger-critic model of learning
	Generative Adversarial Networks (GANs): a forger-critic model of learning
	Loss functions for those who care (cross-entropy)
	GANs generate crisp output, but suffer from mode collapse 
	Week 3: Advanced Topics
	Unsupervised and self-supervised learning
	Reinforcement learning
	Continual learning 
	"Out-of-distribution" learning
	Ethics topics covered along the way
	Projects: loads of resources/datasets provided
	Final remarks

