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Quick aside ,.)
DPZ

= | put way too much stuff in these slides

= | wanted to these slides to not just be a presentation aid, but also a reference material
= | also didn't totally understand 100% of the course

= All this means we'll be flying through some slides with minimal explanation




Background: What was it?
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What was the Neuromatch Academy?

= Two summer schools offered under the Neuromatch banner
- Computational Neuroscience
- Deep Learning

= Each a 3-week long intensive course
Participants separated into "pods" (8+ people per pod)
Led through a series of Colab / Jupyter notebooks by a TA
Notebooks included a mix of

* coding exercises

* video lectures
Split into further groups of 3+ for independent projects
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What was the Neuromatch Academy?

= Deep learning notable lecturers
- Konrad Kording - Surya Ganguli
- Alexander Ecker - Tim Lillicrap

= Participants were mostly

students just out of undergrad

in the first few years of their Ph.D.s

in the first few years of their professional careers
Swathi and | were not the only postdocs, though!
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Google Colab: the environment we worked in

m
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& Cleaner .ipyn
O CleanerUpdate.ipynb B comment &% Share &2 o
File Edit View Insert Runtime Tools Help Last edited on August 19

+ Code + Text Connect ~ /' Editing A~

% - Base imports for visualization, file import, & various other utilities

<>

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import random

import time

from tqdm.notebook import tqdm, trange
from PIL import Image

W 0o NGO UV D WN =

import os

16 import glob
11 import pickle
12 import os

13 import gc

14

1
16

17 import requests, zipfile, io

wvi

from sklearn.decomposition import PCA

v FMRI imports

[ 1] 1 import nibabel as nib
2 from nilearn import datasets
3 from nilearn import plotting

=

~ torch & torchvision inputs
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Presenter
Presentation Notes
Mention notable lack of tutorial on how to set up a machine learning environment: no advice on building a machine, which cloud sources to use for ML applications at scale, and how to instsall Python, Pytorch, and all those fussy dependencies (and on which OS!)

We just worked in Google Colab which kinda takes care of all that for you (at least as a sandboxing environment – again, to do anything at scale, you need to have a dedicated machine or buy time from a cloud provider)

BUT, we have experience setting that up already, which Swathi, Timo, and Ben can speak to.

Mention the Kaggle alternative that was offered

and in general how all of these are basically just instantiations of Jupyter notebooks


Google Colab: the environment we worked in

m
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Notebook settings

Hardware accelerator
sw__ -0

To get the most out of Colab, avoid using a GPU unless you need

one. Learn more

|:| Omit code cell output when saving this notebook

Cancel Save
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Presenter
Presentation Notes
Mention notable lack of tutorial on how to set up a machine learning environment: no advice on building a machine, which cloud sources to use for ML applications at scale, and how to instsall Python, Pytorch, and all those fussy dependencies (and on which OS!)

We just worked in Google Colab which kinda takes care of all that for you (at least as a sandboxing environment – again, to do anything at scale, you need to have a dedicated machine or buy time from a cloud provider)

BUT, we have experience setting that up already, which Swathi, Timo, and Ben can speak to.

Mention the Kaggle alternative that was offered

and in general how all of these are basically just instantiations of Jupyter notebooks


Alternatives ,.)
DPZ

= Kaggle

= Deepnote (especially collaboration-focused)

= Amazon Web Services / Google Cloud (for bigger jobs)
= |nstitutional compute resources (e.g., GWDG)

= Jupyter Notebook + Custom machine

= Only Colab offered free GPU access (albeit with tight restrictions)




PyTorch: a framework for deep learning in Python DPZ.J

O PyTorch
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Presenter
Presentation Notes
Contrast with Tensorflow/Keras, the other major player
And of course there's even older frameworks that pros have been using over the past decade… but that's not really important for our purposes

Mention two things Pytorch does really well to make things run fast: GPU compatibility and AutoGrad

Also mention the vast documentation network for it and industry support: it's real



PyTorch: a framework for deep learning in Python DPZ.J

O PyTorch

"Old" standard:
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Presenter
Presentation Notes
Contrast with Tensorflow/Keras, the other major player
And of course there's even older frameworks that pros have been using over the past decade… but that's not really important for our purposes

Mention two things Pytorch does really well to make things run fast: GPU compatibility and AutoGrad

Also mention the vast documentation network for it and industry support: it's real



PyTorch Features ,.)
DPZ

= Importable standard models (both pretrained & randomly initialized) (e.g., Alexnet, Resnet)

= Importable standard datasets (e.g., MNIST, ImageNet)

= Community-vetted classes for standard network layers

= Community-vetted classes for standard optimizers

= Community-vetted classes and methods for data loading & minibatching
= Autograd & GPU support

= Documentation!

- https://pytorch.org/docs/stable/index.html
- Doesn't quite compare to MATLAB's, but very good given how fast this field is moving

L]



https://pytorch.org/docs/stable/index.html

Week 1: "The Basics"
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Computational graphs, gradient descent, and backpropagation ’.)
DPZ

— tanh (In |14 7——
f(x,y,z) = tan <n[ +Zsin(y)>
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Presenter
Presentation Notes
Note that Pytorch is designed for backprop on rate based networks

You're going to be working uphill if you want to implement different learning rules (e.g., Hebbian) or something like a spiking NN (c.f. e.g. Norse: https://reposhub.com/python/deep-learning/norse-norse.html).


Gradient descent, computational graphs, and backpropagation ’.)
DPZ

2X
f(x,y,z) = tanh <ln [1 + z )
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Presenter
Presentation Notes
Note that Pytorch is designed for backprop on rate based networks

You're going to be working uphill if you want to implement different learning rules (e.g., Hebbian) or something like a spiking NN (c.f. e.g. Norse: https://reposhub.com/python/deep-learning/norse-norse.html).


Computational graphs, gradient descent, and backpropagation t.)
DPZ

— tanh (In |14 7——
f(x,y,z) = tan <n[ +Zsin(y)>
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Presenter
Presentation Notes
Note that Pytorch is designed for backprop on rate based networks

You're going to be working uphill if you want to implement different learning rules (e.g., Hebbian) or something like a spiking NN (c.f. e.g. Norse: https://reposhub.com/python/deep-learning/norse-norse.html).


Note on Gradient Descent Optimizers

= Generally can't load entire dataset into memory
= Losses and gradients are therefore usually estimated from minibatches

= Optimizers come in two general flavors:
- Stochastic Gradient Descent (SGD)
» "Stochastic" because minibatch gradients are noisy estimates of your "true" gradient
* One hyperparameter: learning rate
- SGD with bells and whistles

* Momentum: average over minibatches to get a better gradient estimate (simply called:
Momentum)

« Adaptive learning rate (e.g. RMSprop)
* These are not mutually exclusive! (e.g. Adam)
* These all add hyperparameters!

m
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All sorts of knobs to tweak ’.)
DPZ

= Hyperparameter: a value or model decision determined by the researcher or engineer which
affects learning, but is not subject to learning

= Typical hyperparameters (which can interact!)

- Choice of loss function (e.g., MSE, Cross-Entropy)
Choice of loss regularization terms and coefficients
Choice of model architecture
Choice of activation function(s) (e.g., ReLU, tanh, linear)
Choice of learning rate
Choice of momentum coefficient
Choice of (mini)batch size
...and many more!

= Hyperparameter tuning is a bigger part of the process than one might hope...
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Presenter
Presentation Notes
What is a hyperparameter? It's any decision about your model that you make which is not subject to gradient descent.

Examples include:
Node counts
Layer counts
Choice of nonlinearity (ReLU normally chosen for speed)
Choice of architecture (dropout, residual connections, normalization, in addition to typical architectural decisions)
Choice of optimizer (ADAM chosen for speed, SGD for certainty) (generally don't go for Hessian-dependent methods though)
Explicit regularization terms
Usw…


Cross-validation

= Typical form of cross-validation: holdout

= Split data into three separate sets
- Training: defines your parameter gradients

- Validation: tweak hyperparameters until this looks good
- Test: stop tweaking, just evaluate performance

= Pytorch offers built-in methods for doing this bookkeeping

£
DPZ



Typical methods for regularization and combating vanishing
gradients DPZ.

= Regularization: constrains models to help them generalize
- Early stopping (i.e., when validation loss stagnates, halt training)
- Dropout layers (during each training epoch, randomly fix X% of units to 0 activation)
- Explicit regularization terms in a loss function (e.g., L2 penalty in ridge regression)

= Combating vanishing gradients: a notorious problem of machine learning
- Residual blocks (see more in section on ConvNets)
- Normalization (see more in section on ConvNets)
» Batch normalization
« Layer normalization



Our first network: the multilayer perceptron! ’.)
DPZ

hidden layer 1 hidden layer 2 hidden layer 3

input layer
) ) )
Sigmoid
output layer

Leaky RelU
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All nonlinear neural nets are universal approximators, but
deeper nets have higher "expressivity" DPZ.

Sawtooth function

e 2" linear pieces expressed with
“3n neurons (Telgarsky 2015)
and depth “2n.

1 2 1 2 1 2 0.8 ||
Input x _—— Sawtooth(x)
1 4 1 4 1 ‘4
0.5 -0.5 -0.5
e Shallow implementation takes
exponentially more neurons Il N aEE
Surya Ganguli ®* Multilayer perceptrons _@‘j Tutorial 2 5
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Presenter
Presentation Notes
That is to say, they can approximate certain functions with exponentially fewer nodes / computations


POV: you finally got a deep learning model to run

m
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In [*]: mnist _model(@, [TQDMMotebookCallback(leawve inner=True, leave outer=True)])

Training: (N 30% 3/10 [00:33<01:17, 11 06s/it]

Epoch 0 _ [loss: 0.372, acc: 0.884, val_loss: 0.151. val_acc: 0.954] 100% 18751875 [00:11<=00:00, 52.89it/s]
Epoch 1: _ [loss: 0.241, acec: 0.927, val_loss: 0.121, val_acc: 0.964] 100% 18751875 [00:10=00:00, 33.49it/5]
Epoch 2: _ [loss: 0.202, acc: 0.937, val_loss: 0.109, val_acc: 0.967] 100% 18751875 [00:10=00:00, 28 02it/5]

Epoch 3: [l [loss: 0.188, acc: 0.941] 14% 264/1875 [00:01<00:08, 184.54i/s]
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Presenter
Presentation Notes
"tqdm" package helps to visualize loss over minibatches and show training progress


POV: you finally got a deep learning model to run

m
DPZ

In [*]: mnist _model(@, [TQDMMotebookCallback(leawve inner=True, leave outer=True)])
Training: _ 30% 310 [00:33<01:17, 11.065/it]
Epoch 0: _ [loss: 0.372, acc: 0.884, val_loss§0.151 gval_acc: 0.954] 100% 1875/1875 [00:11=00:00, 52.89it/5]

Epoch 1: _ [loss: 0.241, acc: 0.927, val_loss@0.121 gval_acc: 0.964] 100% 18751875 [00:10=00:00, 33_49it/5]
Epoch 2: _ [loss: 0.202, acc: 0.937, val_loss@0.109 gval_acc: 0.967] 100% 18751875 [00:10=00:00, 28_02it/5]

Epoch 3: [l [loss: 0.188, acc: 0.941] 14% 264/1875 [00:01<00:08, 184.54it/s]
Validation loss:
 Not NaN
« Decreasing across epochs

 This is the dream

Note: A training "epoch” is a set of minibatches which uses each sample of the training set once
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Presentation Notes
"tqdm" package helps to visualize loss over minibatches and show training progress
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MLPs are too dense, let's recycle some parameters DPQ
/




The convolutional network (ConvNet) saves parameters by f)
recycling them across space DPZ.

0.77 B¢ . 0.33 | 0.55 gt 0.33
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Presenter
Presentation Notes
Convolution is just fancy matrix multiplication
Note that backprop for convnets can be computed as a convolution operation
In general, convolution can be "inverted" via convolution!


DPZ

Typical ConvNet pipeline
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A more typical visualization of the typical ConvNet pipeline ’.)
DPZ

Dense (10)

t

Dense (84)

f

Dense (120)

f

2x2 AvgPool, stride 2

f

5x5 Conv (16)

t

2x2 AvgPool, stride 2

t

5x5 Conv (6), pad 2

1
image (28x28) (slides from: Alona Fyshe) Zﬁ ? .
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Training ConvNets for computer vision requires a "data
augmentation” step DPZ.

What can we do? Data augmentation

source: Hernandez Garcia Thesis
Alona Fyshe * CNNs, RNNs, and Parameter Sharing Q‘j 101
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Adding normalization (batch or otherwise) combats the
problem of too-small or too-large gradients DPZ.

Batch Norm Layer Norm Instance Norm Group Norm

H,W
S S S S

NLSL S S S S

H,W
H,W

[ S S S S S

NLLLSL S S

H,W
A A
[ S S S S S

AV
AV
A

[T 7777
(A VAWAY
(AVAVAVAVAY

S S S S S S

(AVAAVAWAY
Z AN\ N\ N\ N\
(ALY
Z AN\ N\ N\

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with IV as the batch axis, C as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Wu, Y. and He, K., 2018. Group normalization. arXiv preprint arXiv: 1803.08494.
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A brief history of ImageNet and the Convnets that solved it

m
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2009: IMAGENET

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC):

Dataset and benchmark on image classification
o 1 million images with ground truth class labels for training (hand-annotated)

o 1000 object categories
Deng et al., CVPR

: ---r-_-... n'_
o 3 wr-— e S sl |
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Presenter
Presentation Notes
Presented by Alex Ecker, actually!


CNNs take over from 2012 ’.)
DPZ

The breakthrough: “AlexNet” 2012

300% 282 Using convnets

g 0% IMAGENET

g 20.0% B Machine performance

E 15.0% == Human performance

o 10.0%

o o 0.067 .

F 5% - - 00303 00225 00
0.0% — - -_-___

2010 2011 2012 2013 2014 2015 2016 2017 2020 MPL
AlexNet Clarifai GoogleNet ResNet ResNeXt SENet ENet-L2
Alexander Ecker « Modern CNNs & transfer learning @j
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Presenter
Presentation Notes
Presented by Alex Ecker, actually!


Old ideas meet new technology (and clever "hacks" to enable
training on 2 GPUs at once) DPZ.

CNNs are old. Why did it work eventually?

(e e o 25 Iy 15 iy
SLELFEL - O
Wy r-aR §= 0 1 may
=mElr@igen ‘e
- [ F S S - 0]
ErEN LB ee
Dol 1% e (TTLSTS [y PR
[T ] | RPN T
Isiisrsn@vEg e
N4 Bllrama=Eaj]
BERpemizan . me
Ha=mBusmie &4

Big Data: ImageNet Deep Convolutional Neural Network Backprop on GPU

+ A number of small tweaks &
Sigmoid ' ReLU, batch normalization, dropout

Image credit: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning-part-4/
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Presenter
Presentation Notes
Presented by Alex Ecker, actually!


VGG: inefficient, but popular and a triumph of model sharing

m
DPZ

torchvision.models.vgg16()

VG G (2 O 1 4 ) torchvision.models.vgg19()

torchvision.models.vgg19_bn()

224x224x3 224x224x64

3 x 3 filters in all layers By the Vision Geometry Group at Oxford

112x112 x 128

56| 56 x 256 Only 3 x 3 filters and max pooling

7Tx7x512
28 x 28 x 512

14X 14 X512 4 x1x4096 1x1x 1000

Training: 3 weeks on 4 NVIDIA Titan Black
GPUs, 6 GB RAM

First train smaller configurations, then inject
layers in between:
110 1311 1611 19 layers

softmax

VGG 16 3 additional layers VGG-19: 138 million parameters / 500 MB

Alexander Ecker « Modern CNNs & transfer learning '@j

Simonyan & Zisserman, ICLR 2015
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Presenter
Presentation Notes
Presented by Alex Ecker, actually!


Resnet: residual blocks (skip connections) enable a gradient
superhighway, combating the vanishing gradient problem

m
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‘ torchvision.models.resnet18()

ResNet (20195)

torchvision.models.resnet152()

Skip connections
(Residual blocks)

;
’
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He et al., CVPR 2016
Alexander Ecker » Modern CNNs & transfer learning
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Depthwise separable convolution: compose filters as outer
products to save more parameters (GoogLeNet and ResNeXt) DPZ.

Depthwise separable convolution

Input features Filters Feature maps Filters Output features
HXW x4 4x3x3x1 HXxWXxX4 4xXx1Xx1x2 HxXW X2
) )
Channel-wise 1x1
(depthwise) convolution
convolution
Depthwise separable: 4 -3 -3 + 4 -2 = 44 parameters O(MK? + MN) parameters
Regular convolution: 4.3 .3 .2 = 72 parameters O(MK?N) parameters
Alexander Ecker « Modern CNNs & transfer learning .@j
Related concepts: "Inception”, 1x1 convolution i

[
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)
Bonus material: U-nets for image segmentation, look a lot like
autoencoders (or rather, encoder-decoder chains) DPZ.

1 64 64
8% 2 Sigmoid Activation
for last layer
input output
image |w/» *1*1*| segmentation
tile al & & &
@ & & &5 map
Sk HEREE

e

' 128 128
256 128

i

512 256 t

:l'gl =» conv 3x3, RelLU
2 4 » copy and crop

i [eliemn # max pool 2x2

4 up-conv 2x2

:-, oy ’ conv 1)(1 Mitglied der
™ ™ . o
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Presenter
Presentation Notes
Not really covered in the course, but of considerable interest!


Recurrent neural networks (RNNs) save parameters by f)
sharing them across time DPZ.




Various sequence learning frameworks ideal for RNN
application DPZ.

one to one one to many many to one many to many many to many

blog.floydhub.com

Leibniz-Gemeinschaft


https://blog.floydhub.com/

Why not just do convolution? (ARMA theory) DPtI)
/

= Convolution = moving average filter
- recent information only
- limited memory unless we use many parameters

= RNN = autoregressive filter
- includes a memory even of sequence elements far in the past
- arbitrarily long-lasting memory (in principle) using very few parameters



Presenter
Presentation Notes
Ideal for (temporal, 1-D) sequence learning

Instantiates an IIR, instead of FIR, filter along 1 dimension (time or sequence position)

Ergo, it's got much more expressive power per parameter than a ConvNet, which operates using FIR filters, BUT it's slow to train since you have to "unfold" the network

(see: https://www.researchgate.net/publication/236154667_Multidimensional_IIR_filters_and_robust_rational_interpolation)



In many sequence learning applications ("language models")
one must first learn an "embedding" DPZ.

word2vec - skipgram Input layer word2vec - chow

1-hot i t t 1
Output layer stk sl (continuous bag of
probabilities of word S)
context words X [@) Proiection 1
e @ v, X, (@ rojection layer Output layer
Input layer Pro‘lbezfill(;u ;‘ayer ? Y2 f A Slfl_m of e:nbtedduiigs probability of w;
m i r : .
1-hot input vector S <A Wil X |e SRS
Ol Wi e o Vi
: - Xpv| ;, :
:YIVI % @ % ow,
z i X, @
Y, [0]
1X|V| Ixd H .
PO Lo @ : @
|V| = vocabulary size  :|w | :|¢ |d| = dimensions §va| Xv @)

target word embedding I context word embedding
for word | B 5 for word | IX‘V |
vw vc
ol X ol %
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Problems with RNNs t.)
DPZ

= |n practice, memories that are stored over long time periods influence the state only very
weakly ("forgetful”)

= Also, gradients very easily explode or vanish to zero since one must "unfold" RNNs
("Backpropagation through time") to perform backpropagation

= This "unfolding" also means that gradient descent requires a lot of operations to compute




A trick to deal with forgetfulness: bidirectional RNNs t.)
DPZ

RNN 2 (Right to Left) < .

A A A A

RNN 1 (Left to Right) | >

Leibniz-Gemeinschaft



A trick to deal with forgetfulness: LSTMs and gating ’.)
DPZ

related, simpler network;: GRU Zi Do




Attention: weighting states by contextual similarity (relevance)

Attention

Attention output: weighted sum of

Attention weights: distribution
over source tokens

encoder states with attention weights

A model canlearnto “pay
i attention” to the most relevant
‘E‘z‘o source tokens for each step

Qs

m
DPZ

Attention i .
score(hy, si) softmax
o How relevant is @) p@) p*
ScalarT out f';uw ce token f.'? /
- or target step t7
Attention 9 P / 1
function f M M —) an
i in /lel le]l |e] |o o| |o| |o] |e
/ 1910 0L5]9,10 .|1o] .Jo| .|o] o
o /ol el “le] le o "le[ 1o 1o
b ol le] el le ol lel lol lo
.
Encoderstate  Decoder state I I T I
fortokenk: s,  atstept: h, ol |99 |0 ol 10| [0 |o
‘ ol 10 |o ol |10l |0 |O
o| |9 O o] |0 0 |0
o] 19 [o o |of [o [o
>
) BAEN KOTIO Ha MATE @0 pos> T saw a
I" "saw" "cat” "on" "mat
Encoder Decoder

James Evans ®* Modern RNNs Tutorial 2 50

N
'Qg
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Presenter
Presentation Notes
Note the reorganization into an encoder-decoder framework, too

This allows us to embed each state of the source sequence in a shared latent space to that of the target latent space
Then compute contextual similarity within that


Transformers: Ditch the RNN, "attention is all you need"!

m
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Qutput
Probabilities

(" )
Add & Norm
Feed
Forward
4 ~\ Add & Norm
| Add & Norm | :
; _dd =iy Multi-Head
Feed Attention
Forward ) Nx
_l
Nix Add & Norm
Add & Norm Mocket
Multi-Head Multi-Head
Attention Attention
At At
(o J \_ ——,
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(Shlﬁed rlght) Mitglied der

Figure 1: The Transformer - model architecture. Vaswani et al. 2017 arXiv @




Transformers are quite difficult to explain
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Qutput
Probabilities

(Y
Feed
it do the terms
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"Self-attention” in more detail ’.)
DPZ

Self-attention matrix form

Each word attends to all words in
the sentence: O(n?)
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Presenter
Presentation Notes
"multi head" means "stacked in parallel"
think of the "channels" of a CNN

K = key
Q = query
V = value


Pros and cons: RNNs vs. Pure Attention ’.)
DPZ

Comparison of RNN and self-attention

RNN

- Sequential O(n)
- Uni-directional and may forget past context
- Handle long sequence trivially

Self-attention

QQQ - Parallelizable O(n?)

- Direct interaction between any word pair
- Maximum sequence length is fixed
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[https://www.d2l.ai]
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Transformers: more than just "language models" ’.)
DPZ

- Also used in computer vision and speech

g L LU @é

* Extra learnable

[class] embedding Lmear Prolectlon of Flattened Patches

i r Mo - g T
e L. TONERD
| 11 .l‘”' n
A s

[Dosovitskiy et al., 2020]
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Autoencoders: the classic generative framework
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Classical autoencoders don't tile latent state space evenly ,.>
DPZ

Images Generated from the Conv-AE
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®
Variational autoencoders smooth the underlying state space ,.)
DPZ

VAE Objective

VAE training balances two objectives:
1) Encoder Objective: Estimate the posterior P(z | x) s.t. P( z) is a unit Gaussian: MO0, I)
2) Decoder Objective: Estimate P(x | z) to reconstruct x with high probability

P(z)=JP(z1x)P(x)dx

0 .
=
O —~
g 2 = X 3
QO — @)
o ™H 5 = P(zIx) g S mmp P(xlz)
£ Ea a)
T 1 T (dp)
<] 0 1
Vikash Gllja * Generative Models (VAEs & GANs) ﬁ‘j Tutorial 1 23
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Presentation Notes
map each sample onto a probability distribution with the encoder (try to make it as close to N(0,1) as possible)
then draw a sample from each latent distribution
then have the decoder (hopefully) spit out something that looks similar
voila!



VAEs yield better random samples ’.)
DPZ

Images Generated from a Conv-Variational-AE

. . . e
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Note: Convolutional VAEs are generally bad at invariant
representations, unlike regular CNNs for image classification DPZ.

VAE test set image reconstructions
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Generative Adversarial Networks (GANs): a forger-critic model
of learning DPZ.

Real Image

Generator constructs an
image. Their reward
function is to not get

caught.
Fake Image
Generator
Konrad Kording ® VAEs and GANs ﬁ‘j 4
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Presentation Notes
Basically, the VAE loss function is too "smooth"

What if we used another ANN, an "Oracle", as our loss function instead?


Generative Adversarial Networks (GANs): a forger-critic model

of learning
Real Image
The discriminator sees
a mix of real and fake
images.
P(Real)=.9
Fake Image
Reward for
Generator —P identification of fake

Konrad Kording ®* VAEs and GANs

vs real.

£
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Presentation Notes
Basically, the VAE loss function is too "smooth"

What if we used another ANN, an "Oracle", as our loss function instead?


Loss functions for those who care (cross-entropy) DPZII)

The Discriminator Loss Function

Real y=1, Fake y=0

Jp = =5 >ivy yilog D(z;) + (1 — y;) log (1 — D(z;))

The Generator Loss Function Cat-and-mouse

Can G avoid getting caught? How well did it do at fooling D? Finicky to train!

Leibniz-Gemeinschaft
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Presentation Notes
Basically, the VAE loss function is too "smooth"

What if we used another ANN, an "Oracle", as our loss function instead?


GANs generate crisp output, but suffer from mode collapse DPZ’ID

1

Neuromatch was a very anti-GAN summer school...
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Neuromatch was a very anti-GAN conference…


-
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Deutsches Primatenzentrum
Leibniz-Institut fir Primatenforschung

Week 3: Advanced Topics
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Unsupervised and self-supervised learning ’.)
DPZ

= Unsupervised
- "Deep belief networks"
- Proper unsupervised methods aren't there yet

= "Self-supervised"
- Take an image dataset
- Data augmentation to hell and back
- Perform image classification, assign augmented images to label of source image
- Basically, a way to try to learn invariant representations without human labels



Presenter
Presentation Notes
"Self-supervised" means making a classification problem out of unlabeled exemplars by generating a bunch of images to pair 


Reinforcement learning

m
DPZ

= A fairly complicated topic, because it's not just machine learning

= |n a nutshell

- "state", "action", "reward", "policy" — important vocabulary for any RL model

If you are familiar with Q-learning and Dynamic Programming, then you have the framework you
need to understand this

If you have this background: Deep Q learning uses an ANN to map states to Q (prospective reward)
values instead of trying to populate a full Q table through exploration alone

Optimal policy can then be inferred as the one that maximizes Q from a given state

Policy gradient methods learn the policy directly, and thus may be more intuitive for non-CS folks
(and seem to do better, t00)

= Probably of interest to learn
- Not data limited!
- Training agents to move a body effectively in an environment: that's RL!

L]



Continual learning DPZ’ID

= Catastrophic forgetting
- Train on one task
- Then train on another
- Uh oh! The network forgot how to do the first task

= Strategies to counteract:
- Rehearsal / Replay, e.g., Gradient episodic memory (GEM)
- Regularization, e.g., Elastic weight consolidation (EWC)
- Supermasks in superposition

= CORe50 dataset to stress-test continual learning paradigms
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Transfer learning
Catastrophic forgetting


"Out-of-distribution" learning DPZ.:

= Transfer learning
- Train a net on one task/dataset (e.g., Imagenet)
- Then use this to initialize your net for a new task/dataset
- Normally, random initialization, e.g. Xavier initialization, is used

= Meta-learning
- "Learning to learn"
- One goal: given only 5-10 exemplars, learn to identify a new image class
- Not much covered in the way of methods...

= Continual learning fits under this umbrella, too
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Ethics topics covered along the way

= Don't buy into "hype" (or "anti-hype" for that matter)

= Being aware of biases (gender, race, age, ...)
- And how DL can reinforce harmful biases

= Deepfakes
= Environmental impacts
= RL for, say, self-driving cars

- Trolley problem?
- https://www.moralmachine.net/

£
DPZ
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Presentation Notes
Environment
Reinforcement of societal biases



Projects: loads of resources/datasets provided ’.)
DPZ

= https://deeplearning.neuromatch.io/projects/docs/datasets and models.html

= https://deeplearning.neuromatch.io/projects/Neuroscience/ideas and datasets.html

= https://deeplearning.neuromatch.io/projects/Neuroscience/algonauts videos.html

= |n many cases, "domain adaptation” of an existing model was often the most effective
solution...

Mitglied der
i ®
Leibniz-Gemeinschaft ;’


Presenter
Presentation Notes
We made a baby network in my group (two, actually, albeit very shallow ones, our project was an architecture comparison project)

Which ultimately did not work

A lot of it involved getting used to the Pytorch framework

And dealing with the fact that three heads trying to code at once was a little cumbersome

BUT! many datasets and resources were provided!

https://deeplearning.neuromatch.io/projects/docs/datasets_and_models.html
https://deeplearning.neuromatch.io/projects/Neuroscience/ideas_and_datasets.html
https://deeplearning.neuromatch.io/projects/Neuroscience/algonauts_videos.html

®
Final remarks ’.)
. DPZ

= A lot of material, could not retain it all

= Net valuable experience

= Decent starting point for developing a DL aspect of a project
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Presentation Notes
I personally blame the "Google people" for how overwhelming it got... they all had CS backgrounds and seemed to assume we did, too!
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